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Current oscillations observed during the anodic dissolution of  copper under sinusoidal and square 
wave potential perturbations are analysed via certain techniques of  nonlinear dynamics. Low order 
Fourier expansions, and Poincar6 maps indicate the existence of  essentially nonchaotic characteristic 
structures. 

List of symbols 

ak, Ak 
bk, Bk 
G 

f 
o(j ) 
i 

J 
M 
T 
t 

Fourier cosine coefficient of the kth harmonic 
Fourier sine coefficient of the kth harmonic 
Fourier harmonic amplitude; Ck = 
(A k -q- Bk) 1/2 
frequency (s -1) 
transfer function (or frequency spectrum) 
current density (mAcm -2) 
imaginary parameter; j = ( -  1) 1/2 
magnitude of a transfer function 
period of an oscillation (s) 
time (s) 

Va 
x(t) 
Zi 

anode potential (SCE) 
a function of time; x0 its amplitude 
notation for the/th zone in Figs 2 and 7 

Greek symbols 
~b short-hand for cosZ(2rct/T); Equation 6 
~b k phase angle associated with the kth harmonic 
f~ angular frequency of a sinusoidal forcing 

function (rad s-I) 
w angular frequency associated with the period 

of the null equation of the Duffing problem 
(rad s - 1) 

1. Introduction 

The anodic dissolution of copper into aqueous 
sodium chloride solutions containing small amounts 
of thyiocyanate ions under potentiostatic control has 
been the subject of an intensive investigation in recent 
years [1-4]. Under carefully controlled experimental 
conditions, a wide variety of oscillation patterns 
with high sensitivity to electrolyte composition, pH 
and anode potential, has been observed. The complex 
nature of oscillation patterns is most likely related to 
an insufficiently understood reaction/adsorption/ 
desorption mechanism suggested by direct visuali- 
zation of the anode surface and in situ morphological 
examinations [5]. 

The purpose of this paper is to analyse the oscil- 
latory behaviour of anodic current due to periodic 
waves imposed on the a priori constant anode 
potential, in search for a better understanding of the 
nonlinear characteristics of oscillation. Analysis is 
carried out on experimental current-time series 
obtained under essentially unsteady-state conditions, 
given that the onset of oscillations is always found 
within a transient current response regime following 
the imposition of a constant anodic potential. In this 
respect, the approach is complementary to tech- 
niques perturbing a steady state of which the 

impedance technique has reached [6, 7] prominence 
in recent years. It can be used in the latter sense as 
well, when the complexity of the electrode process 
renders various impedances difficult to interpret. 

2. Experimental details 

Figure 1 illustrates the apparatus, whose details have 
been described previously [4]. The electrolytic cell con- 
tained a circular pure copper disc anode with a 
50 mm 2 geometric area at the onset of current flow, 
and a pure copper plate cathode of a 1000 mm 2 active 
area, placed at a distance of 3.5 cm from the anode. 
The anode potential was set by a PAR 273 microcom- 
puter-controlled potentiostat; sinusoidal and square 
wave modulation was provided by a Model 203A 
HP variable phase programmable function 
generator. The current-time series was recorded by 
the microcomputer at a sampling rate of 0.2 s. The 
electrolyte was an aqueous mixture of 4moldm -3 
NaC1 and 1 mmol dm -3 KSCN. The electrolyte had 
an initial pH of 6.7 and its temperature was kept 
between 19°C and 21°C. The range of the 
modulation frequency and amplitude was 
established in exploratory runs prior to the main set of 
experiments. 
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Fig. 1. Experimental apparatus: (1) cell; (2) working 
electrode; (3) reference electrode (saturated calomel); (4) 
counter electrode; (5) connector; (6) potentiostat/galvano- 
stat; (7) microcomputer; (8) variable phase function 
generator. 

3. Theoretical background and methods 

Under a periodic perturbation, the response of a 
linear system possesses the same wave form as the per- 
turbation and its amplitude and phase is determined 
by the system transfer function (also called the fre- 
quency spectrum). By contrast, the response of non- 
linear systems to a periodic perturbation is highly 
specific, since nonlinear systems do not have transfer 
functions. The classical describing function technique 
[8, 9], which truncates the Fourier series of the oscil- 
lating output to the term carrying the fundamental 
input frequency, has been an important means of 
analysing closed-loop control system stability. In a 
general case, however, there is no guarantee that har- 
monic amplitudes will rapidly decrease in the Fourier 
series. In the case of certain power function non- 
linearities the Fourier expansion becomes a simple 
polynomial in terms of the sine or cosine function. 
The output Fourier series may be regarded, there- 
fore, as a 'fingerprint' of a nonlinear system subjected 
to a sinusoidal perturbation with a specific amplitude 
and frequency. A particularly interesting illustration 
is the classical Duffing problem of a single pendulum 
under periodic forcing [10] whose solution is 
extremely sensitive to parameters multiplying the 
linear and cubic term of the governing differential 
equation. 

Periodic perturbations carrying several sinusoidal 
functions have also been proven useful in system 
analysis. As shown by Takahashi et al. [11], the 
response of a linear system to square wave pertur- 
bation with Fourier expansion 

[1 2 ~ s i n ( m w 0 t )  
x(t) = x 0 ~ + ~ r  L m 

may be written as 

y(t) = x0 [-~- + ~z.~= 1 

m = 2 n + l  

n=O,  1 . . .  

(1) 

Mmsin(m~ot + ~m).] (2) 

where mu[G(jm~oo)]; Om ==- argG(jmwo) and M0 - 
lim [G(jw) l as w ~ 0. It follows, in principle, that a 
single square wave perturbation of a preset frequency 
imposed on a linear system delivers its entire fre- 
quency response. In the case of nonlinear systems no 
such luxury exists and the response can be very com- 
plex. This is well illustrated by the output of a cubic 
nonlinearity subjected to an input of x(t)= 
A 1 sinwt+ d 3 sin3~ot [12], Similarly, the classical 
approach of Lorenz to the dynamics of thermal con- 
vection [13] is based on the first three modes of the 
Fourier series of input perturbation. It is instructive 
to note that the distinction between single sinusoidal 
forcing and a harmonic series type forcing is some- 
what arbitrary, due to the equivalence relationship 
[10], discussed briefly in the Appendix, which is a 
key element in treating the Duffing problem. 

The ability of periodic perturbations in systems 
analysis is not confined to deterministic structures. 
The general Fourier series representation 

o o  

F(t) =~-+a° Z(akcoswkt+bksinwkt) (3) 
k=l 

also serves as basis for the establishment of the power 
spectrum of fluctuating outputs with Gaussian ran- 
dom characteristics [14]. The output power spectrum 
is simply the sum of the 2 2 (ak + bk) terms divided by 
the length of the output interval, where ak and bk 
are coefficients of the Fourier series for the periodic 
function coinciding with the output function over 
this interval. 

In recent years, alternative/complementary 
methods of nonlinear system analysis have been intro- 
duced with the advent of the modern theory of sys- 
tems dynamics. In analysing system structures from 
experimentally obtained output functions with a 
priori unknown nonlinear characteristics regression 
methods [15], sequential pattern recognition [16] and 
heuristic techniques [17] exhibit various degrees of 
mathematical encumbrance and approximativeness. 
The graphical approach via phase portraits and 
Poincar6 maps [11, 18-20] employs a sampled-data 
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Fig.  2. A n o d e  c u r r e n t  osc i l la t ion  p a t t e r n s  a t  
c o n s t a n t  po t en t i a l  a n d  s inuso ida l  po t en t i a l  
puls ing .  Va = - 4 0  4- 4 m V ; f  = 0 . 1 4 H z .  

sequence Yn+l =f(Yn),  where Yn is an observation at 
sampling time tn. With a driving 'motion' of period T, 
tn = nT  + % is conventionally chosen such that % is 
an appropriate time delay. The collection of 
(Yn+l, Y,) points in a two-dimensional plane is the 
Poincar6 map. Routinely used in the study of 
chaotic behaviour, this approach has been very 
useful in identifying periodic attractors in driven 
oscillators. 

4. Analysis of the experimental observations 

4.1. Behaviour under sinuso idal-f or cing 

A typical experimental observation, shown in Fig. 2, 
indicates the existence of three oscillatory zones. The 
onset of the first zone (Z1) coincides with the full 
coverage of the anode surface by a mixture of Cu20 
and CuO (the oxide layers build up gradually while 
the anode potential is kept constant). In the absence 
of sinusoidal forcing zone Z2 is not observed, hence 
zone Z3 follows zone ZI immediately. Sinusoidal 

Table 1. Summary of  the harmonic analysis* associated with zone Z2 
in Fig. 2 fundamental period T = 7 s 

Harmonic Ak Bk Ck Ck 
number, K /degree 

0 90.60 - 90.60 - 
1 0.51 2 x 10 -5 0.51 89.98 

2 - 7 . 4 4  5 x 10 -5 7.44 - 9 0 . 4 1  

3 - 1 . 4 6  7 x 10 -5 1.46 - 8 9 . 9 9  

4 - 0 . 6 3  9 x 10 -5 0.63 - 8 9 . 1 7  

5 - 0 . 2 7  1 x 10 -4  0.27 - 8 9 . 9 7  

6 - 0 . 0 8  1.4 x 10 -4  0.08 - 8 9 . 9 0  

7 - 0 . 0 8  1.6 x 10 -4 0.08 - 8 9 . 8 8  

8 0.05 1.8 × 10 -4 0.05 89.79 
9 < 10 -3 2.0 × 10 -4 0.001 88.84 

10 0.04 2.3 × 10 -4  0.04 89.68 

* T h e  a p p r o x i m a t i o n  is expressed  as S~k Ck sin(2kTr/T t + Ck). 

forcing creates a more complex oscillation structure; 
upon cessation of forcing, oscillation gradually 
vanishes (end of zone Z3). Harmonic analysis of 
zone Z2 yields the Fourier series approximation 

i(t) ~- 45.301- 0 . 5 0 6 c o s ~ t - 7 . 4 4 1  c o s ~ t  

67r 
- 1.461 cos ~ t . . .  (4) 

to the experimental time series, by neglecting terms 
with amplitudes less than unity in Table 1. The 
associated phase portrait in Fig. 3 indicates a con- 
sistently two-peak periodic behaviour. Similar obser- 
vations in various anodic dissolution systems have 
also been described [21, 22]. Two-peak periodic 
behaviour can also be demonstrated theoretically for 
systems with R6ssler dynamics [19, 23]. The sensi- 
tivity of the oscillation pattern to the frequency of 
forcing is demonstrated in Figs 4-6. The effect of 
the bias value of the anode potential was found to 
be negligible in the - 4 0 - - 5 0  mV (SCE) range. Simi- 
larly, the amplitude of the sinusoidal input function 
has a negligible effect on oscillation structure in the 
4-8 mV range of the oscillation amplitude. 

4.2. Behaviour under square-wave forcing 

As shown in Fig. 7, the oscillation structure is strongly 
nonlinear, and oscillation can persist in constant 
potential subperiods (zones Z1 and Z3) as in the 
case of sinusoidal forcing. Fourier analysis yields har- 
monics of irregularly varying amplitudes, con- 
sequently, Fourier series representation becomes 
uninviting. The associated phase portraits (Figs 8 
and 9) demonstrate the deregularizing effect of 
square-wave forcing on the shape of the sinusoidal 
forcing-related attractor. The square wave-related 
attractor possesses its own characteristic shape. Sen- 
sitivity to the fundamental period of the square 
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wave is high as depicted in Figs 10 and 11; the resur- 
gence of oscillation after a relatively quiescent time 
interval at low wave periods is an apparent 'finger- 
print' of current response to square wave potential 
excitation; this phenomenon is not understood at 
present. The input amplitude effect is similar to that 
discussed in Section 4.1. 

4.3. Comparison with reference structures 

Two specific classes of experiments may be con- 
sidered to constitute reference conditions. The first 
class consists of sinusoidal perturbation experiments 
with electrolytes containing no thiocyanate ions. As 
shown in Fig. 12, current oscillations are observed 
only in the oscillating potential regime, and they 
possess a highly regular, single period structure (the 
associated phase portrait is not shown). The absence 
of current oscillation at constant anode potentials 
was found to be independent of the numerical value 
of the potential. 

The second reference class are experiments with 
constant anode potentials, when the electrolyte con- 

70 Fig. 3. Phase  por t ra i t /Po incar6  m a p  associa ted  wi th  Fig. 
2, zone  Z2. % = 1.6 s 

tains thiocyanate ions, e.g. zone Z l in Fig. 2. From 
Table 2, the oscillating anodic current density may 
be closely approximated by the truncated Fourier 
expansion 

i "° 48.171-  5 . 4 1 3 c o s 7 t - 0 . 2 8 8 c o s 7 t . . .  (5) 

so far as the harmonic terms for k > 2 possess ampli- 
tudes less than one tenth of C2. The associated phase 
portrait (omitted) is a highly regular ellipse in the 
i(t + 1.6)/i(t) plane. 

Table 2. Summary o f  the harmonic analysis* associated with zone Z 1 
in Fig. 2 fundamental period T = 7 s 

Harmonic A k B k Ck ~Pk 
number, K /degree 

0 96.34 - 96.34 - 
1 -5 .413  5 x 10 -5 5.413 - 9 0 . 0 0  
2 - 0 . 2 8 8  1.1 x 10 -5 0.288 - 8 9 . 9 8  

3 - 0 . 0 2 9  1.6 x 10 -4 0.029 - 8 9 . 6 8  

4 - 0 . 0 2 9  2.1 x 10 -4 0.029 - 8 9 . 5 7  

* The  a p p r o x i m a t i o n  is expressed as ~ g  Cg sin(2krct/T + tb k ); for 

k > 4, IGI _< O.Ol. 
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Fig. 5. Anode current oscillation patterns at 
constant  potential and sinusoidal potential 
pulsing. - V a = - 5 0  ± 4 m V ; f  = 0.015 Hz. 
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Fig. 9. Phase portrait/Poincar~ map associ- 
ated with Fig. 7, zone Z4. To = 1.6 s. 
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Fig. 11. Anode current oscillation patterns at 
constant potential and square wave potential 
pulsing. Va = - 5 0  i 4 m V ; f  = 0.071 Hz. 

5. Discussion 

The oscillatory nature of anodic copper dissolution is 
determined by a complex reaction mechanism involv- 
ing the CuC1, Cu20, CuO and CuSCN species [3-5, 
24]. In the tentatively proposed qualitative 
adaptation [3] of the Brusselator model of chemical 
reactions [25] the onset of oscillation at a constant 
anode potential was related to a Hopf  bifurcation 
involving the rate of cuprous ion and cuprous chlor- 
ide kinetics. The employment of sinusoidal anode 
potential inputs permits an alternative mathematical 
interpretation in terms of the apparent mathematical 
characteristics associated with the electrode surface. 
It follows from Fourier analysis of data assembled 
in Tables 1 and 2 that the current response to 
excitation via both constant and sinusoidal potentials 
may be expressed as 

N 
i "~ Z / 3 k ~ k ;  q) =--~ C0S2 --~ (6) 

k=O 

w h e r e  flk a r e  e x p e r i m e n t a l l y  d e t e r m i n e d  c o e f f i c i e n t s ,  

on account of (elementary) relationships between 
powers of the cosine function of an angle, and cosines 
of its multiples. 

Specifically, in zone Z1 

i ___ 53.291 - 8.5~b - 2.324) 2 (7a) 

and in zone Zz 

i -~ 38.811 + 34.26~b + 10.56~b a - 46.72~b 3 (7b) 

Thus, excitation via a constant anode potential 
generates a purely circular limit cycle reminiscent of 
the Duffing system with sufficiently small input ampli- 
tudes in a system with cubic nonlinearity [26], or of a 
Van der Pol system with a sufficiently small coefficient 
e of the nonlinear term of the classical Van der Pol 
equation in nonlinear mechanics [27]. The negative 
term in Equation 7(b) precludes the assumption of a 
single exponential nonlinearity of the form Vn; n an 
integer, but a polynomial type nonlinearity similar 
to the Duffing system [10], or a structure of the Van 
der Pol equation with high e-coefficients may well 
serve as analogoues (a quantitative identification via 
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nonlinear oscillator theory is beyond the scope of this 
paper). 

As stated in Section 4.2, current oscillations due to 
square wave anode potential excitation are not amen- 
able to Fourier analysis. The phase portraits shown in 
Figs 8 and 9 indicate the essentially limit-cycle nature 
of the current oscillations (with one or more periods). 
A slight tendency to irregularity is indicated by non- 
monotonic sectors of the trajectories; however, no 
strange attractor can be specifically identified. 

6. Conclusions 

The new experimental data and their analysis pre- 
sented in this paper provide further evidence for the 
essentially nonchaotic oscillatory behaviour caused 
by thiocyanate ions. The structure of oscillations 
appears to be (at least qualitatively) similar to two 
classical nonlinear oscillators. While current under- 
standing of the reaction mechanisms, which deter- 
mine the overall anodic dissolution, is rather limited, 
future studies of oscillations coupled with in situ 
surface-scanning analyses should facilitate a 
quantitative determination of kinetic parameters. 
The approach applied to anodic copper dissolution 
into aqueous NaCI/KSCN solutions may readily be 
extended to the anodic dissolution of various sub- 
stances, which involve oscillating currents. 
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Appendix: A brief discussion of the dulling problem 110] 

The trajectory of a simple pendulum moved by a 
sinusoidal driving force is given by integrating the 
nonlinear equation [10] 

d2Y + y + ry 3 = Ksin f~t (A.1) 
dt 2 

where r is a real parameter. If  the solution is sought in 
terms of a Fourier series 

OO 

Y = E a2k+l sin(2k + 1)wt (A.2) 
k=l 

where w is the frequency of the null-equation 
associated with K = 0 in Equation A.1, then it is 
advantageous to replace the driving force by a har- 
monic representation 

OO 

K s i n a t  = E K2j+I sin(2j + 1)wt 
j=l 

2 K sin # 
K2j+I --- • # - Q/a~ (A.3) 

~r~2 _ (2j + 1) 2,  

The time series form of the solution and associated 
phase trajectories (dy/dt plotted against y) are sen- 
sitive to the parameters in Equation (A.1); a typical 
case where r = -1 /6 ,  K = 2 and # = 3 is discussed 
in detail by Davis [10, pp. 390-4], as well as the 
more difficult case of # -~ 1 (nonlinear resonance). 

The equivalence relationship in Equation A.3 
implies the usefulness of perturbation functions 
expressible via Fourier series, e.g. the square wave 
function employed in this work, in the study of 
dynamic behaviour. Deviations from response to a 
single sinusoidal perturbation serves as a measure of 
nonlinearity, especially in terms of the specific charac- 
teristics of phase portraits. 


